
Report on Deep-learning the Latent Space of Light Transport

ALEXANDER EPPLE, Technical University of Munich

Light transport is a complex and di�cult problem, as it involves the unsolv-
able rendering equation. While approximations exist, namely in the form
of raytracing, they are slow to compute and not yet practical for real time
rendering [Akenine-Mller et al. 2018]. This report covers a novel approach,
as introduced by [Hermosilla et al. 2019], which tries to solve this problem
by modelling the transport of light as a deep neural network. To add to the
existing work, we provide a discussion and ideas for future work.

Additional Key Words and Phrases: Deep learning; Convolutional neural
networks; Point clouds; Rendering; Shading

1 INTRODUCTION
In the �eld of computer graphics, rendering is considered to be
the process of generating 2D images from virtual cameras, light
sources and 3D objects [Akenine-Mller et al. 2018] and simulates
the transport of light. While arti�cial intelligence has been used
for rendering, for example in Deep Shading [Nalbach et al. 2017],
little research has been done to directly map a 3D scene to the �nal,
shaded image. The authors of the original work thus propose an
approach that directly learns the latent space of light transport from
3D point clouds.

The proposed network is split into two steps and features end-to-
end learning from the point cloud to the �nal, shaded image. The
network is then trained to output ambient occlusion (AO), global
illumination (GI) and subsurface scattering (SSS) e�ects, which are
subsequently evaluated. In this report, we provide additional evalu-
ation of this novel approach in the form of a discussion and ideas
for future work.

2 TRAINING DATA GENERATION
The �rst step in training a novel network, such as this one, is gen-
erating training data. The authors aim to teach the network three
shading e�ects, GI, AO and SSS. Hence, separate training sets are cre-
ated. To generate the training data, 1000 models from two datasets
are randomly chosen and uniformly but randomly sampled at 20.000
surface points. The models are on a ground plane and scaled to the
same size for consistency.

The shading e�ects are computed using raytracing for each model
and each surface point. While direct lighting is ignored, as the e�ects
are all due to higher order bounces, indirect light is generated from
30 environment maps. The training data consists of di�erent inputs
and outputs depending on the e�ect. For AO, the inputs are positions
and normals, with the output being the AO value as a scalar. GI needs
more information and has additional inputs, namely di�use albedo
and direct illumination irradiance, whereas the output is indirect
irradiance. Finally, SSS has the same inputs as GI and additionally
the absorption coe�cient and index of refracion. The paper does not

This report is a part of the lecture, Master-Seminar - Deep Learning in Computer
Graphics, Informatics 15, Technical University of Munich.

The original work is introduced by [Hermosilla et al. 2019].

state the output speci�cally, but it is most likely also the scattered
irradiance. The choice for irradiance instead of radiant exitance is
also explained, as irradiance allows for texture modulation.

The training data is then split into training, validation and test
sets, consisting of 20.000, 1.000 and 2.500 point clouds respectively.
Additionally, they generate a dataset of animated models to test
generalization and whether the model has temporal stability.

3 NETWORK ARCHITECTURE
The network is split into two components, the �rst step operates on
the 3D point cloud alone, while the second step transforms the 3D
information to the 2D image.

3.1 Monte Carlo Convolutions

Fig. 1. An example of a 2D point cloud sampling hierarchy, adapted from
[Qi et al. 2017].

To understand the proposed networks’ architecture, it is critical
to �rst look at its core building blocks, which in this case are Monte
Carlo convolutions (MCC). As the network operates on point clouds,
which are often irregular and unstructured, convolutions and feature
abstraction needs to be invariant to sampling. Hermosilla et al.
[Hermosilla et al. 2018]. Qi et al. note, that compared to CNNs, which
have data on regular grids with uniform constant density, deciding
local neighbourhood is more challenging. They also state, that it
nevertheless is bene�cial and important to extract local features
and group them to produce higher level features, as this allows for
better generalizability [Qi et al. 2017].

Monte Carlo (MC) methods use random samples to approximate
the value of an integral [Kalos and Whitlock 2009]. As convolutions
are integrals, convolutions of point clouds can be solved using MC
integration. This allows for an e�cient, scalable and invariant way
of up- and downsampling point clouds.

(f ∗ д)(x) ≈
1

‖N (x)‖

∑
j ∈N (x )

f (yj )д(
x−yj
r )

p(yj |x)
(1)

Equation 1 shows the MCC function as described in [Hermosilla
et al. 2018]: For a point x , the neighbourhood N (x)within the recep-
tive �eld of radius r is used to compute the estimate. The probability
density function p(yj |x) needs to be estimated as well and roughly
correlates to how dense or sparse samples are in the receptive �eld.



2 • Epple

The learnable kernel д maps the o�sets x −yj to scalar weights of a
multi-layer perceptron (MLP).

Additionally, parallel Poisson disk sampling is used to create
sampling hierarchies, as they serve scalability and allow bounding
the sample count. These hierarchies can be compared to increasing
or reducing the resolution of an image.

Figure 1 shows how a sampling hierarchy for point clouds can
look like and how it could be constructed.

3.2 3D Step
The �rst step consists of 10 MCCs that takes the scene’s 3D point
cloud, consisting of n samples, as input. Each sample is labeled with
the required attributes for the shading e�ect, for AO each sample
would therefore feature its position and normal. The network is built
on the encoder-decoder principle, which allows transport of local
features to the global level. This architecture was chosen because
global shading e�ects also result from the culmination of many
localized interactions. This step is marked as 3D Step in �gure 4.

Fig. 2. An example of applying a MCC to a point in a 2D Poisson disk
sampling hierarchy, from [Hermosilla et al. 2018]

Each convolution takes a slice of a point cloud hierarchy as input.
Each sample of which has its own feature vector. This hierarchy
is created using parallel Poisson disk sampling as described in 3.1
and ensures both a good distribution of samples and having a local
and global version of the point cloud available. An example for
this can be seen in �gure 2. Here the feature vectors from each
level are concatenated for the sample point x . The encoder doubles
the features on each level, from an initial 8 to 64 on the deepest
level. It also has an additional within-level convolution on each
level, allowing for non-linear feature adjustments. The convolutions
between levels make it possible to transfer learned, local features to
the global view. This is also evident, as the radius R of the receptive
�eld also doubles from level to level, resulting in a larger sphere of
in�uence for each point.

The global features are then transferred back to the most shallow
level, which leaves each 3D point with a latent space encoding of
its impact on the per-pixel shading e�ect. The encoding roughly

contains the relevant information for other points, depending on
shading e�ect.

3.3 2D Step

Fig. 3. Shading a single pixel, taken from [Hermosilla et al. 2019].

The second step consists of one MCC to transfer learned features
between the whole point cloud and a subset of it, as well as a fully
connected (FC) layer that outputs the shaded image. This step is
labeled 2D Step in the overview image 4. The feature transfer di�ers
for training and testing. During training it is applied to a subset of
the original sample points, while it performed on pixel / point pairs
as seen by a camera during testing. There is no di�erence between
points seen by a camera and random samples, but using a random
subset of the original point cloud allows for e�cient training.

Training is done by taking the L2 loss of the network output and
the real shading value, as computed by raytracing during training
data generation. This also makes end-to-end training possible. The
pixel / point pairs during testing are labeled with the necessary
attributes for shading, such as positions and normals for AO. The
pairs are the closest surface points of the scene point cloud, as seen
by a camera for each pixel of its output image. This approximation
is necessary, as the amount of pixels is usually far greater than the
size of the point cloud, which would prohibit scalabilty.

The single MCC is transferring the features to the points used for
shading, which is done by the FC layer in a single convolution. This
last convolution computes a �nal color using the features and input
attributes, for example a monochormatic gray value for AO. The
points used for this convolution are the pixel point and a certain
amount of additional points within a set Possion disk radius around
this point. The additional points, which are selected from the origi-
nal scene point cloud, determine the quality of the result and are
controlled by the radius of the receptive �eld. This performance /
quality trade-o� makes it possible to have constant performance,
as every pixel computes the integral from approximately the same
amount of points. This �nal step is also displayed in �gure 3.

4 EVALUATION
In the original work, evaluation is done both qualitatively and quan-
titatively by comparing their method to a screen space approach
and to two lesser versions of their network, featuring either the
3D or 2D step. Outperforming those versions means that both the
internal 3D features, as well as the learned 2D sampling, serves a
purpose. All methods are compared to a path traced reference for



Report on Deep-learning the Latent Space of Light Transport • 3

Fig. 4. An overview of the network architecture and its layers, adapted from [Hermosilla et al. 2019]

comparison and three metrics are employed, one on the 3D point
cloud and two on the 2D image.

The results of the quantitative evaluations are not fully conclusive,
as the full network only heavily outperforms the other approaches
in the case of SSS. While AO results are better, the di�erence is not
as drastic. When it comes to GI, all methods perform roughly the
same. The authors do note, however, that their approach has the
best temporal coherence, meaning the shading of animated objects
changes realistically and gradually.

An overview of the results for AO can be seen in �gure 5. It can
be observed, that both screen space and 2D-only methods mostly
resolve local, 3D-only methods mostly global features, whereas the
combined method outputs both.

5 DISCUSSION
With the approach layed out and evaluated, we will now provide a
short discussion highlighting both possible advantages and limita-
tions of the method. As their method seems to be mostly aimed at
real time graphics, rather than an alternative to o�ine rendering
methods such as raytracing, we will focus on this aspect. Since a
comparable deep learning approach does not exist, the discussion is
limited to comparing it to traditional methods.

5.1 Advantages
One notable feature of this approach is the fact that it operates fully
in 3D and regresses shading by taking the entire scene into account.
This is similar to raytracing and can capture details that screen
space methods, as often used in real time graphics, have no access
to.

Another advantage lies within the way shading is computed,
it can be fully decoupled from standard rendering tasks such as
direct light. This makes it possible to �ll empty GPU compute slots
in the rendering pipeline, similar to other compute tasks, which
may be advantageous compared to state-of-the-art screen space
methods. Since every aspect of their method is scalable, quality and
performance can easily be adjusted to meet the needs, which is a
bene�t as well.

Finally, their method fully works on unseen data as well as dy-
namic scenes. This means a well trained model can potentially
replace the need for o�ine computations, such as lightmap baking.
Many popular GI methods, for example, rely on precalculated data,
which not only takes up GPU memory but also has to be kept up-to-
date and requires static scenes. Thus, the proposed method could
be a good quality / limitations trade-o�.

5.2 Limitations
While the approach of Hermosilla et al. has many potential bene�ts,
there are also some non-negligible hurdles to overcome in order to
make it practical for real time rendering.

Firstly, their method fully operates on point clouds with uniform
materials that do not support specular re�ections. This heavily limits
its use in interactive applications, which mostly use polygon meshes
instead of point clouds and require textured and re�ective surfaces.
The authors, too, acknowledge these shortcomings.

Another issue lies within the integratability of the network into
existing frameworks. Where methods such as Deep Shading [Nal-
bach et al. 2017] operate on deferred shading bu�ers, which are
easily accessible in most deferred renderers, the discussed approach
requires an uncommon input structure in the form of a point cloud
containing the entire scene. This requires one to �rst uniformly
sample the entire scene and then, ideally, feed the point cloud into
an acceleration structure, such as the voxel grid the authors use.
This means, that integrating the model into existing frameworks
may be very di�cult and the required pre-processing of the scene
could potentially make it slow and unpractical.

Lastly, the performance of the network when regressing shad-
ing is also problematic. While the results are better than screen
space methods, the time requirements are not. All network-based
shading e�ects perform much worse than their screen space coun-
terparts, taking 150% longer on average. GI alone takes 107.6ms,
which is too slow for most real time applications. Any e�ect that
takes longer than roughly 42ms can not be run at the minimum 24
frames per second required for convincing interactivity. With recent



4 • Epple

Fig. 5. Examples for the AO results output by the various methods used for the evaluation, as seen in [Hermosilla et al. 2019].

advances in real time raytracing [NVIDIA 2021b], it is also ques-
tionable whether the proposed method can outperform equivalent
traditional methods, both in quality as well as performance.

6 RECENT WORK
Before providing some ideas for future work, a couple of related
works are presented for comparison. The aforementionedDeep Shad-
ing network [Nalbach et al. 2017] also targets real time rendering,
but uses CNNs on deferred rendering bu�ers to regress shading.
This, while being faster and easier to integrate, is limited by being
essentially a screen e�ect.

A more recent work [Sanzenbacher et al. 2020] performs ren-
dering entirely based on neural networks, instead of a selection of
shading e�ects. This work also has not only a comparable 3D &
2D step, but works on the basis of point clouds. They use PointNet
instead of MCCs, however, which performs worse [Hermosilla et al.
2018].

Lastly, Vicini et al. teach a neural network SSS sampling and
achieve impressively accurate results [Vicini et al. 2019]. Their
method is limited to SSS and can also be seen an alternative to
path tracing, rather than being aimed at real time rendering.

7 CONCLUSION & FUTURE WORK
In this report, we presented a method for learning the latent space of
light transport, as introduced by [Hermosilla et al. 2019]. We showed
how the most basic building block of the architecture, the Monte
Carlo convolution, enables learning in 3D space and how structured
2D information can be regressed from it. Finally, we provided an
extended discussion, detailing several bene�ts and limitations of
the proposed method.

To round out the report, we also want to introduce some ideas
for future work and possible extensions of the work. Firstly, com-
paring the model to state-of-the-art, hardware accelerated real time
raytracing could provide valuable insight into the practicality of the
approach in modern, high-�delity interactive applications. While

screen space methods are de�nitely still common, it no longer re-
�ects the current high-end methods. Secondly, it would be interest-
ing to see the model used in a production renderer. While the very
limited rendering pipeline is su�cient for testing the model, testing
how well the model can generalize is not nearly as feasible.

Finally, implementing shading using dedicated hardware could be
very bene�cial, similar to how Tensor Cores can be used for super-
sampling [NVIDIA 2021a]. Accelerating the discussed shading ef-
fects with sparingly used hardware could both speed up regression
drastically and free up resources previously used to compute equiv-
alent e�ects in screen space. Using all capabilities of modern GPUs
e�ectively is certainly the best way to increase rendering quality
and could make the method practical, as well as interesting for real
time applications.

REFERENCES
Tomas Akenine-Mller, Eric Haines, and Naty Ho�man. 2018. Real-Time Rendering,

Fourth Edition (4th ed.). A. K. Peters, Ltd., USA.
Pedro Hermosilla, Sebastian Maisch, Tobias Ritschel, and Timo Ropinski. 2019. Deep-

learning the Latent Space of Light Transport. In Computer Graphics Forum, Vol. 38.
Wiley Online Library, 207–217.

Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski.
2018. Monte carlo convolution for learning on non-uniformly sampled point clouds.
ACM Transactions on Graphics (TOG) 37, 6 (2018), 1–12.

Malvin H Kalos and Paula A Whitlock. 2009. Monte carlo methods. John Wiley & Sons.
Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, H-P Seidel, and Tobias Ritschel.

2017. Deep shading: convolutional neural networks for screen space shading. In
Computer graphics forum, Vol. 36. Wiley Online Library, 65–78.

NVIDIA. 2021a. NVIDIA deep learning super-sampling (DLSS). (2021). https://developer.
nvidia.com/dlss (accessed 31.10.2021).

NVIDIA. 2021b. NVIDIA RTX real time raytracing overview. (2021). https://developer.
nvidia.com/rtx/raytracing (accessed 31.10.2021).

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413
(2017).

Paul Sanzenbacher, Lars Mescheder, and Andreas Geiger. 2020. Learning Neural Light
Transport. arXiv preprint arXiv:2006.03427 (2020).

Delio Vicini, Vladlen Koltun, and Wenzel Jakob. 2019. A learned shape-adaptive sub-
surface scattering model. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–15.

https://developer.nvidia.com/dlss
https://developer.nvidia.com/dlss
https://developer.nvidia.com/rtx/raytracing
https://developer.nvidia.com/rtx/raytracing

	Abstract
	1 Introduction
	2 Training Data Generation
	3 Network Architecture
	3.1 Monte Carlo Convolutions
	3.2 3D Step
	3.3 2D Step

	4 Evaluation
	5 Discussion
	5.1 Advantages
	5.2 Limitations

	6 Recent Work
	7 Conclusion & Future Work
	References

