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Abstract —
Synthetic data generation is becoming ever more im-
portant and prevalent. Having access to large and well
annotated datasets is especially relevant for Pose Es-
timation tasks. Thus, we proposed a novel synthetic
dataset generator in a previous work that combines real
imageswith simulated and rendered objects. While the
idea showed promise, it was lacking in the department
of lighting. To solve this problem, we introduce a light
estimation extension to the existing framework, which
provides both detected light sources and exposure es-
timations to the renderer. In addition, we evaluate
whether light source estimation contributes valuable
information to training data and show how it can im-
prove training.

1 Introduction

Every neural network is only as good as the dataset it
is trained on. This is especially true for Convolutional
Neural Networks (CNNs), which are used primarily in
computer vision, such as in 6D Pose Estimation (6D
PE) applications. In a previous work, we addressed the
issue of availability of extensive, high quality datasets
for 6DPE, by synthetically generating images [6]. This
was done by simulating both rigidbody and light trans-
port physics to generate synthetic renders of only those
objects, which the 6D PE network is supposed to de-
tect. This simulation is based on real world data and is
then combined with real images, to generate data that
is as realistic as possible. While some of the generated
images did fullfill this criteria, many of them did not
due to lack of realistic lighting.

Thus, we propose an extension to the original
pipeline, which automatically detects and extracts
lighting information from the underlying real world
scenes, to enhance the quality of the synthetic ren-
ders. With this extracted lighting data, it is possible
to make the scenes appear closer to the original condi-
tions when captured, therefore improving overall ren-
dering quality. No additional input data is required,
making it possible to use the same scenes and then di-

rectly compare CNNs trained with and without proper
lighting.

Problem statement. To render realistic images, ac-
curate lighting is crucial. Hence, we have to extract
this information from the available data, which con-
sists of reconstructed scenes and low dynamic range
(LDR) images. To model the conditions in the scenes
from our dataset, which aremostly indoors, both direc-
tional light and point light sources have to be detected
reliably. To match the light intensities, high dynamic
range (HDR) as well as illuminance data is required.
Therefore, the light estimation pipeline needs to first
acquire HDR information and then detect directional
and point lights, which have realistic intensities, colors
and positions.

Contribution. We implemented further improve-
ments on a synthetic dataset generator, namely light
and exposure estimations. HDR relighting is com-
bined with illuminance calculations to enable accurate
light source detection, which can work on most recon-
structed scenes automatically. Additionally, we com-
pared how a CNN performs when trained on a dataset
with and without light source estimation.

2 Fundamentals

In order to understand the importance of light esti-
mation for synthetic image generation, we first need
to understand how pose estimation works and how
synthetic images are generated. The following sec-
tion explains the general concepts and gives a rough
overview of these topics.

2.1 Pose Estimation

There have been many attempts to determine the pose,
which is the corresponding position and rotation of an
object, in three dimensional (3D) space from images
alone [14, 21]. Many others have additionally used
depth maps to provide even more data to the neural
network [26, 17]. This allows for an additional level
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of information, namely, the ability to restore positions
from a fixed point of view.
There are three main methods for pose estima-

tion: Holistic, keypoint-based and dense methods
[19]. While holistic methods such as PoseNet [14]
and PoseCNN [27] try to predict object poses directly
in one step using techniques such as templatematching
or CNNs, keypoint-based methods such as BB8 [21]
and YOLO9000 [22] approach the problem via cor-
respondence matching. First, keypoints are extracted
from an image and then matched with a 3D object.
This matching implicitly defines the pose of the object
in the scene. There also are dense methods such as
PVNet [19] and [13] that rely on pixel or patch based
voting schemes.
While not all methods require depth information for

training, all of them do need large amounts of anno-
tated RGB images to function. Most training tasks
require more than 100k annotated images to work reli-
ably [5]. Annotations usually consist of masks, labels
and pose information, which often have to be done
manually [5].

2.2 Rendering

In the field of computer graphics, rendering is con-
sidered to be the process of generating 2D images
from virtual cameras, light sources and 3D objects
[2]. While the 3D objects and cameras are available
to our generation pipeline, light sources are not. How-
ever, lights do play a critical role in physically based
rendering (PBR), as they provide direct and indirect il-
lumination [4]. While indirect illumination is radiance
that has been reflected or refracted multiple times be-
fore it reaches an object in question, direct illumination
stems directly from a light source.
Local illumination typically dominates the overall

appearance of objects in indoor scenes, while indirect
illumination provides a more subtle and nuanced re-
finement. This is due to local light sources being both
spatially-varying throughout the scene, instead of dis-
tant, and in close proximity to the objects in the scene.
Hence, indoor scenes require local light sources to be
represented and as close to the original as possible in
order to look realistic. Annotating lights in scenes is
therefore difficult and often requires extensive manual
input [7].
PBR often relies on path-tracing for rendering. This

method is a Monte-Carlo based ray-tracing algorithm,
that accumulates and averages many light paths for
each pixel of the final image [2]. Most commercially

available renderers, such as Blenders Cycles and Dis-
ney Pixars RenderMan, rely on path-tracing for ren-
dering, as it strikes a good balance between rendering
speed and quality. In our approach, we also use a
physically-based renderer, Appleseed, to generate our
datasets.

3 Related Work

While synthetic dataset generators are on the rise, there
are still not many that aim to be photo realistic. Most
notably, BlenderProc [5] by Denninger et al. has been
used to generate large datasets to be used in the BOP
Challenge 2020 [3]. This rendering pipeline, similar
to our own, is built on top of Blender and uses PBR
and path-tracing. Their method is fully synthetic and
renders objects in scenes from the SUNCG dataset.
In their paper, they also point out the importance and
advantages of photo realistic images [5].

In the work of Hodan et al., they use Autodesks
Arnold to render fully synthetic training data. This
renderer also features PBR and path-tracing and the
six scenes that they used were a mix of scans and
hand-crafted models [11]. While Tremblay et al. sim-
ulate rigidbody physics for realistic object placements
similarly to our approach, they don’t use a PBR based
rendering pipeline [25].
When it comes to indoor light estimation, Zhang et

al. propose an approach to recover HDR information
from recreated real world scenes. They then use this
data to recover various light sources and for the inverse
rendering of the scene. While their method does pro-
duce good results, it requires both manual input and
many assumptions to be true in order to work [28].
Gardner et al. on the other hand, use deep learning
to infer HDR illumination from a single LDR image.
They train their network on LDR panoramas in order
to predict light directions and then fine tune it on HDR
panoramas to improve light intensity estimations [8].
In a later work, they train a deep neural network to pre-
dict parametric light sources from a single LDR image
instead. To train their model, they propose an algo-
rithm to extract ground truth 3D light sources from
HDR panoramas [7].

4 Approach

The light estimation pipeline and its integration into
the generator will be discussed in detail. First, we
relight the scene mesh in HDR, ensuring the scene
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is lit evenly, linearly and as close to the conditions
when captured. Next, illuminance is calculated for a
rendered scene panorama to set the initial intensities.
From here, one directional light source and multiple
point light sources are detected and optimized.

4.1 HDR Relighting

In order to estimate light sources, we first need HDR
information. Since the 3RScan dataset [12] we use
does not provide HDR meshes or textures, this step
has to be done by the estimator. We closely follow
the HDR mesh recovery as described in a paper by
Zhang et al. [28]. Their method is based on the
assumption, that each pixel of each scene mesh vertex
have to represent the same radiance bi, which turns the
corresponding frame exposure tj and pixel radiance
pairs Xi j into the solvable optimization problem 1.

min
tj,bi

∑
i, j

(tjbi − Xi j)
2 (1)

After inverse gamma correcting all available im-
ages, they are then projected onto the scene mesh.
This is done by reprojecting every mesh vertex for ev-
ery capture, and storing the corresponding pixel value
if the vertex is visible. Then, it is possible to per-
form the aforementioned minimization using the list
of found radiance values per vertex. The reprojection
is done in a compute shader, while the minimization
uses Ceres Solver [1] as described in the paper.
The minimization differs slightly from the imple-

mentation in the paper, whereas they use the radiance
values directly and have three seperate values for ex-
posure, we opted for relative luminance and only one
single exposure value instead. The resulting per-frame
exposure values are also stored in a JSON file to be
used during rendering later on.
Next, the exposure corrected radiance Xi j

tj
is dis-

tributed onto the mesh vertices using the geometric
weighting function 2, which favors head-on vertex val-
ues and those closer to the surface. Additionally, a
confidence term is employed to ensure over- and un-
derexposed pixels do not skew the result, as they are
less likely to be accurate.

gi j =
(−v̂i j · ni)(v̂i j · oj)

vi j

2 (2)

For the final vertex radiance values, we sum the
weighted samples and the weights, dividing the two to
get a weighted, averaged sample. The radiance repro-
jection is again performed in a compute shader, which

speeds up theHDR relighting process drastically, com-
pleting within a minute for most cases.

4.2 Light Source Detection

For the light source detection, we also follow an es-
tablished method as described in a paper by Gardner
et al. [7]. In their approach, they extract light sources
from HDR panoramas to train a deep learning light
estimator. With the previously relit scene mesh now
being available, we render aHDRpanorama using Plo-
tOptiX [20]. The camera position is chosen from the
original capture points, as we assume those poses are
guaranteed to not be within any mesh geometry. The
pose closest to the center of the mesh is selected and
an equirectangular panorama is rendered, using flat
shading with the vertex radiance values and no light-
ing. This results in a panoramic image close to those
available in the Laval Indoor HDR dataset [8].

4.2.1 Illuminance Calculation

Figure 1 Comparison of the rendered panorama (top) and
the calculated illuminance map (bottom).

According to an article by Kodak [15], luminance
is the measure of the brightness of a surface, whereas
illuminance is a measure for the incident light on an
area. Since the goal is to estimate light sources, il-
luminance is required to get a good result for initial
light intensity. To calculate illuminance, we adapt the
method described in a paper by Li et al. [16] to work
with an equirectangular instead of a fisheye projec-
tion. To accomplish this, the differential solid angle
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dΩ is calculated as a latitude-longitude rectangle [23].
This is possible, because the globe is also projected
equirectangular and is thus identical to the panoramic
projection. For each pixel, the edges at the four car-
dinal directions are calculated, converted to longitude
and latitude angles φ & θ and finally used to acquire
dΩ. Then, the per pixel illuminance Ei can be calcu-
lated from the relative pixel luminance Li as seen in
equation 3. It should also be noted, that we do not need
to cosine correct and hence do not have to integrate.

Ei = LidΩ = Li(sin φN − sin φS)(θE − θW ) (3)

With an illuminance map being available, light
source detection can now be performed. Figure 1 gives
an example for the resulting illuminance map. Some
key differences are that the light source is more promi-
nent and the top and bottom edges are less pronounced,
as they represent less solid angle in the panorama.

4.2.2 Directional Light

Figure 2 Directional radiance map (top) and resulting light
in Blender, with highlighted light direction (bottom).

Light source detection is done in two steps, starting
with directional light. We assume, that indoor scenes
usually have none or only one directional light source,
namely the sun. Another assumption is, that sunlight
enters the indoor scene through a window, which is
most of the times missing in the scene mesh. This is
the case, because the reconstruction algorithm has no

depth data available in those areas, since the glass is
invisible to the depth sensor. When parsing the scene
data, each depthmap is checked for empty areas, which
are subsequently marked.

During the sun detection step, all images are con-
sumed by yet another compute shader, which first cal-
culates the vector from the camera to the pixel in world
space. If the pixel has no depth associated with it, this
vector is interpreted as a direction where sunlight is
potentially shining into the room. This world space
direction is used to index a pixel in panoramic image.
The original pixels’ radiance is exposure corrected and
stored in this output panorama at the previously cal-
culated index. Illuminance is calculated as well, as
shown in the previous section and also stored in a sepa-
rate output panorama. If multiple pixels have the same
index in the panorama, the radiance and illuminance
values are added and a per-pixel counter is increased.
Finally, the output radiance and illuminance panora-
mas are averaged by utilising these per-pixel counters.

After acquiring those directional radiance and illu-
minance maps, the sun direction can be estimated. We
assume, that the overall brightest spot in the illumi-
nance map is the sun or main light source in the scene.
Using the radiance and illuminance maps, both color
and intensity can be estimated. This step is identical
to the point light estimation and will thus be described
in more detail in the following section. The detected
direction and light properties are stored in a JSON file
for later use in the rendering pipeline.

Image 2 shows an example of a directional radi-
ance map and the resulting directional light set up in
Blender.

4.2.3 Point Lights

Point light detection is performed directly on the il-
luminance, radiance and depth maps rendered previ-
ously. We closely follow the algorithm described by
Gardner et al. [7] to generate their panoramic indoor
lighthing dataset. First, the brightest spot in the illumi-
nance map, which has been blurred to remove outliers,
is extracted. Next, a flood fill algorithm is used to find
the connected area, where the the intensity is above
40% of this peak. The total intensity is calculated by
summing up the pixels and converted to exposure value
(EV), which is commonly used to describe light inten-
sity. This step is necessary, as Appleseed’s lights use
this parameter instead of photometric units. In case
the total light intensity is below 80% of the overall
peak, the light detection ends. Otherwise the detected
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Figure 3 The rendered HDR panorama (top) and the de-
tected point light sources (bottom).

light is processed and masked out. The algorithm will
then proceed with the new brightest spot later on.

To process the detected light, an ellipse is fitted
around the detected pixels and used to approximate
the solid angle of the corresponding light source. The
extrema points of the ellipse are calculated using its
position and axes, and the angle between the closest
and furthest points is determined and averaged. Inter-
preting the resulting angle θ as the opening angle of
a cone, we can calculate the spherical cap of the cone
and thus its solid angle Ω = 4π sin θ

2 [24].

The light color is determined by averaging the cor-
responding pixel radiance values and normalizing the
result using the previously calculated EV. The position
can be calculated by averaging the depth values of the
pixels, finding the center of mass of all and thus, the
average direction and multiplying the two. This, in ad-
dition to the camera position, which was used to render
the panoramas, gives the lights position in world coor-
dinates. An example for detected light sources can be
seen in figure 3, the colored ellipses are the ones fitted
around the pixels associated with the light source.
In order to improve the calculated light intensity,

each detected light is optimized individually. This is
done by solving the minimization problem 4, with ri
being the calculated radiance, Ri being the observed
radiance of pixel i from the rendered panorama, and
p being the peak of the detected light. The weighting
term ensures that pixels more likely to be part of the

Figure 4 Comparison of the rendered panorama (top) and
the detected, rendered SG light only (bottom).

light source are more important than those near the
threshold.

min
ri

∑
i

((ri − Ri) ·
ri
p
)2 (4)

ri = Gi(v, µ, λ, α) = αeλ(µ ·v−1) (5)

The radiance ri is calculated using spherical gaus-
sians (SG) [18] as seen in equation 5. The amplitude
α is the detected light color multiplied by its EV, the
sharpness λ being the solid angle of the fitted ellipse.
Finally, the axis µ is the direction from the camera to
the light source. Spherical gaussian lights are a quick
and good way of simulate point light sources, thus
making them the obvious choice. See image 4 for an
example of a SG light as it is used during optimization.

The minimization is done using the Ceres Solver
[1] as well, with everything but the amplitude α be-
ing kept constant. While many initial intensities are
already quite good, this optimization does help the
light sources match the corresponding areas of the re-
lit scene even more closely. If the converted EV after
the optimization is above zero, the light and its param-
eters are output to the JSON file as well. This marks
the end of the light source detection.

Figure 5 draws a comparison between a real and
rendered image. While the estimated lighting is, of
course, not perfect, it is quite comparable everywhere
except for the corner of the room.
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Figure 5 Comparison of a real image (left) and a recreation
using the detected light sources (right).

4.3 Rendering

Figure 6 Two successive frames with differing exposure.
The image on the left is overexposed, which is reflected in
the rendered drills.

In the extended rendering pipeline, everything oc-
curs in the same order and way as described in the
previous work [6]. The only differences are, that the
light estimator is run before processing the scene, as
well as using the detected instead of default lights, if
available. The per-frame exposure is also used during
post processing of the rendered objects, this ensures
that they are not over- or underexposed in compari-
son to the real image. Image 6 shows two successive
frames with differing exposures and its effect on ren-
dering.

5 Evaluation

To evaluate the light estimation extension of the dataset
generator, we perform a qualitative and quantitative
evaluation on a dataset consisting of 10k images. We
compare our improved synthetic images to state of the
art synthetic generators introduced in 3 as our quali-
tative analysis. For the quantitative evaluation, Mask
R-CNN [9] is trained on both the old and new 10k
datasets and then evaluated on the same test sets from
LineMOD [10].

5.1 Quantitative Evaluation

To evaluate the extended generator quantitatively, we
compare Mask R-CNN [9] models trained on corre-
sponding datasets of the same size and at a total of
6k steps each. This ensures, that the only difference
between the performance of the two models is the ad-
ditional use of light source estimation during training
data generation. Eachmodel is tested onLineMod [10]
test sets and the F1 and IoU scores are determined.

With the datasets being rather small, the results are
split into total (TO) and detected-only (DO), since
the networks often do not detect anything due to in-
sufficient training. While more training data would
be necessary to compare our method properly to other
datasets, we can still show how our additions impacted
performance.

- New Old
Object F1 IoU F1 IoU

Benchvise 0.53 0.63 0.49 0.62
Phone 0.12 0.19 0.10 0.15
Drill 0.16 0.20 0.06 0.07
Mean 0.27 0.34 0.22 0.28

Table 1 Total F1 and IoU scores for models trained on the
new, old and combined datasets.

- New Old
Object F1 IoU F1 IoU

Benchvise 0.64 0.69 0.63 0.67
Phone 0.55 0.60 0.62 0.64
Drill 0.64 0.62 0.63 0.56
Mean 0.61 0.64 0.63 0.62

Table 2 F1 and IoU scores of models trained on the new
and old datasets when considering only those images where
something was detected.

While the differences between the old and new
datasets are small, they are also apparent. Overall
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Figure 7 Examples from our dataset, BlenderProc [5] and from Hodan et al. [11] (left to right).

Figure 8 Examples from our old dataset, without light estimation.

Figure 9 Examples from our new dataset, with light estimation.

performance is improved by 23% for F1 and 21% for
IoU scores, as listed in table 1. Performance for test
images with detections differs marginally, with F1 and
IoU being within 3% respectively, as can be seen in
table 2. It seems as though the dataset with light esti-
mation enables the model to converge faster, as overall
performance is increased. When it comes to detections
alone, the differences are negligible and may also be
due to chance.

5.2 Qualitative Evaluation

For the qualitative analysis, we present four images
from our own dataset, BlenderProc [5] and Hodan et
al. in figure 7. While both fully artifical image sets
feature shadows and slightly more consistent lighting,

our examples are not far behind. Lighting and self
shadowing looks mostly realistic and true to the scene,
only the lack of contact shadows breaks the illusion.
Our approach also has the advantage of having more
diverse indoor scenarios in comparison toHodan et al.,
as the used scene dataset consists of only six scenes.

Additionally, we also compare our old and new
datasets in figure 8 and 9 directly. The images pre-
viously had fixed light sources and no added exposure,
which sometimes looks acceptable, but in other cases
breaks the illusion. The images with both new features
are more diverse in shading, both from scene to scene,
as well as from frame to frame. The addition of light
source and exposure estimation definitely makes a big
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difference in terms of making the objects look more
realistic and believable.

5.3 Discussion

Our results show, that including light source detection
in amixed real and synthetic image generation pipeline
is advantageous. Comparing datasets from our gener-
ator with and without light estimation shows that the
inclusion of light source estimation enables a CNN
to converge faster than without. Qualitatively speak-
ing, the generated images look much more realistic,
as appropriate shading, self shadowing and exposure
make the images appear more harmonious with the
scene than before. Our results are now quite close to
those of fully artificial rendering frameworks, often
only falling behind due to the lack of shadows.

6 Conclusion & Outlook

In this paper, we described an approach to estimate
light sources in reconstructed, LDR indoor scenes.
While the implementation is specific to the 3RScan
[12] dataset, it can be adapted to work with other
datasets as well.
While overall, the addition of realistic lighting

seems to have a negligible impact on detection per-
formance for object detection, it does make training
converge faster. Additionally, the shading in images is
now more diverse and appropriate, making the results
look more realistic and believable.

Figure 10 An early look at reflective and transparent mate-
rials.

In the future, adding more material properties to the
rendered objects might be an interesting way to add
even more visual complexity to the training images.
Experiments with metallic and transparent surfaces
already show a lot of promise but would need more
refinement, as can be seen in figure 10.

Finally, some problems described in the original
work still persist and also need to be addressed. Scene
meshes still need improvement, as the objects often
"clip" into existing geometry, due to holes in the re-
constructed mesh. Image selection is still a problem.
Many real images are blurred and thus should not be in-
cluded, while others that are not blurry are ignored. It
would also be interesting to see if new scenes scanned
with both the previously mentioned issues in mind
would allow for even better results and especially if it
would further improve our light detection.

Switching to a different renderer would also be a
large improvement, as render time is far from where it
could be. This could make it possible to generate large
enough datasets to truly put our rendering pipeline to
the test.
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