
Rendering in computer generated movies

Alexander Epple1

Seminar: How to Make a PIXAR Movie
alexander.epple@tum.de

Supervisor: Christian Reinbold
1 Technische Universität München

Figure 1: Improvements in rendering capabilities over the span of 20 years [CFS∗18, p. 2, 15], [CJ16, p. 118]

Abstract
Rendering is a challenging process in the making of modern computer generated movies. There are many different approaches
to render high quality images, such as rasterization, ray and path tracing. The general rendering pipeline will be explained
and real time rasterization will be compared to the REYES algorithm used in movie production. Ray tracing, its extensions,
problems and current solutions will be discussed in detail. Finally, hybrid rendering systems and the performance of rendering
systems over the years will be discussed in this state-of-the-art report.

1. Introduction

In modern computer generated movies, rendering prevails to be one
of the most important and difficult steps. With computing power
constantly increasing, it becomes possible to achieve almost photo-
realistic computer generated images. Actors that have passed away
can be digitally recreated, e.g. Peter Cushing in "Rogue One - A
Start Wars Story" as seen in the right most picture in figure 1. Ren-
dering, that is the generation of a two-dimensional images based on
three-dimensional objects, virtual cameras, lights, materials and so
on [AMHH08, p. 11] can be approached in various different ways.
In this paper the two most important techniques, rasterization and
ray tracing, as well as hybrids will be discussed. The general raster-
ization process will be explained and compared to the rasterization-
based REYES algorithm that was used in Pixar movies. Ray tracing
and path tracing, a more modern and sophisticated approach will be
discussed in detail. Hybrid variants of the two techniques are go-
ing to be explained using examples found in the movies Cars and
A Bugs Life. Finally, the advantages and disadvantages of those ap-
proaches are going to be compared regarding performance and pro-
duction quality.

2. The Rendering Pipeline

In general, pipelines are used to achieve a speed-up by splitting a
process into well defined stages. The rendering pipeline of mod-
ern computer graphics applications only slightly differs, no matter
which rendering technique is used. It is generally split into three
conceptual stages: application, geometry and rasterizer [AMHH08,
p. 12]. The first two stages are very similar for the described ren-
dering techniques, the last one is, however, quite different and the
main focus of this paper.

2.1. Application Stage

In the application stage, the geometry that should be displayed as
well as various other necessary data is transported to the graphics
processing unit (GPU). It is the connection between the main pro-
cessor as well as main memory and the GPU. This stage also takes
care of calculations that are not performed in any other stage, such
as animations with transformation matrices [AMHH08, p. 15] or
generating MIP maps of textures to reduce the amount of memory
needed to render the scene by a large amount [CFS∗18, p. 2].



2

2.2. Geometry Stage

The geometry stage itself is split into several parts. The first step
transforms the geometric objects into camera or eye space. This is
done by transforming the points - also called vertices - that each
primitive consists of by adjusting their size, rotation and position.
In an intermediate step, they are placed in the scene, then the scene
itself is rotated and positioned in a way that positions the camera
in the scene’s origin, looking in the direction of the negative Z-
axis [AMHH08, p. 16, 2.3.1]. The influence of lights in the scene
on each vertex is calculated - also referred to as shading - next,
depending on the vertex’s material [AMHH08, p. 17, 2.3.2]. The
following steps are usually skipped by ray tracing renderers. For
rasterization based renderers the scene is then projected into a unit
cube (the canonical view volume). Before the projection transfor-
mation, objects look the same no matter the distance to the camera.
This defines an orthographic camera and even though this type is
used sometimes, perspective cameras are more common. This type
is closer to how humans perceive the world. Hence, objects appear
smaller the further away they are [AMHH08, p. 18, 2.3.3]. After the
projection transformation, the triangles that are not in the canonical
view volume (CVV) are clipped against it. Clipping replaces those
vertices outside of the CVV with new ones, which are on the inter-
sections of the CVV and the edges of the triangle [AMHH08, p. 19,
2.3.4]. Finally, the remaining vertices are transformed once more
to screen space, scaling the unit cube to the final image size. Coor-
dinates after the transformation represent pixel positions, they are
now in so-called "screen coordinates" [AMHH08, p. 20, 2.3.5].

2.3. Rasterizer Stage

The last stage before the final image output is the rasterizer stage.
The transformed vertices are now tested for visibility and pixels are
drawn according to the scene setup. This stage varies heavily based
on the used technique and will be discussed in greater detail later
on in sections 3, 4 and 5.

3. Rasterization

The process of splitting the geometry of the scene into pixels and
giving them an appropriate color is called rasterization. This pro-
cess occurs after all transformations are completed and the final im-
age can be computed. There are several ways to resolve the scene
into pixels using rasterization, two of which will now be explained.

3.1. General Approach

The traditional version used in most real time rendering applica-
tions is done in four stages: triangle setup, triangle traversal, pixel
shading and merging [AMHH08, p. 22]. In the first step, the trian-
gle setup, the necessary data for shading is computed [AMHH08,
2.4.1]. In the second step, triangle traversal (or scan conversion),
each primitive (triangles, lines, etc.) is then tested against each
pixel for coverage. If the pixel is covered by the primitive, a frag-
ment is generated. The data from the previous step is interpolated
for each fragment based on the primitive type [AMHH08, 2.4.2].
This process is shown in figure 2. Each fragment is now processed
by a so-called shader, that computes the corresponding color. The

calculation varies heavily since shaders are programmable. A very
common way is to use an image containing surface information to
determine the color. This procedure is called texturing [AMHH08,
2.4.3]. In the final stage the processed fragment is tested for visi-
bility. This is done using several buffers, most importantly one that
contains depth information of previously processed fragments. If
the buffer already contains a fragment, the fragment that is closer
to the camera is kept. It must be noted that this algorithm needs
to process opaque fragments before processing transparent ones to
work. If this is not the case, transparent fragment colors can not be
combined (blended) with opaque fragment colors properly, which
results in a wrong final color [AMHH08, 2.4.4]. After all fragments
have been processed, the image can be stored or displayed.

Figure 2: Rasterization visually explained (adapted from [scr])

3.2. REYES (Renders Everything You Ever Saw)

While the previous approach is fast and the quality is good enough
for real time rendering, it has its drawbacks. Traditionally, this ver-
sion of rasterization has major problems with edges, causing alias-
ing artifacts. This collided with the image quality requirements of
Pixar [CCC87, p. 96, 2.2]. The developers also tried to avoid using
traditional solutions or environments in order to achieve the best
result possible [CCC87, p. 95, 1.]. Since the goal was to be able to
render images more complex and in a better quality than possible
at the time, [CCC87, p. 95, 1.] a new rendering technique was in-
vented: The Reyes algorithm. It was used to build Pixar’s in-house
renderer Renderman and produced many animated movies as well
as special effects.

3.2.1. The REYES Algorithm

The algorithm has three distinct methods; bound, dice and split.
Bound computes the bounds (with displacement) of each primitive
that fully contains it. They do not have to be tight. Dice tessellates
the primitives into a grid of quadrilaterals ("micro-polygons"), their
use will be explained later on. Split cuts a primitive into several
smaller primitives of either the same or a different type [CCC87, p.
99, 3.]. The implementation used for Renderman is optimized by
sorting objects into image tiles ("buckets"). The screen space is di-
vided into an matrix of buckets, which are processed one at a time
in a given order [CCC87, p.100, 5.]. The algorithm determines for
all primitives in a bucket if they can be diced or if they need to be
split first. A primitive may only be considered for dicing when it



3

does not produce a large grid of micro-polygons or a wide range
of micro-polygon sizes. Once a primitive can be diced, it is con-
verted into a grid of micro-polygons. Those micro-polygons are
roughly half the size of an image pixel [CCC87, p.97, 2.3]. Figure
3 shows an example of this process. Afterwards, each vertex of the
micro-polygon grid is shaded. Finally, pixel colors are computed
by stochastically sampling the grid at various points and testing
against a depth buffer [CFS∗18, p. 2, 2.1].

Figure 3: A sphere made of primitives being split and diced into
micro-polygons using the REYES algorithm [CCC87, p. 99]

3.2.2. REYES versus Standard Rasterization

The Reyes algorithm has several advantages over the technique
used in real time rendering in regard to the requirements of Pixar.
Firstly, it allows for very complex scenes. Since one image tile typi-
cally consists of either 16x16 or 32x32 pixels the computation usu-
ally only has to access a small amount of the geometry and tex-
tures. The micro-polygons are smaller than pixels, which means it
is easy to determine and load only the ones needed for rendering an
image tile. Since those micro-polygons are usually part of a small
amount of objects, the accessed textures are often the same and al-
ready in the cache. This is ideal to keep memory consumption low
and avoid texture trashing (loading and discarding the same texture
from the cache many times). All data can also be removed from
memory after the tile has been processed [CFLB06, p. 2, 4.]. An-
other advantage lies in Reyes avoiding clipping calculations, since
micro-polygons that aren’t in the viewing frustum of the camera
are culled immediately [CCC87, p. 100, 3.]. Finally, it removes the
need for expensive texture filtering, because the micro-polygons are
diced in UV-space (texture coordinates). This leads to one polygon
in the grid covering almost exactly one texture pixel (texel). Due to
this, colors can be directly read from the texture, using the polygon
coordinates, without filtering them first. [CCC87, p. 98, 2.4.].

4. Ray tracing

The principle of utilizing rays to generate images has been known
for a long time, in fact the concept was already used in the middle
ages by Albrecht Dürer to paint pictures with correct perspective
projection [JC07, p. 14, 2.1]. This section will describe different
ray tracing methods and their advantages.

4.1. General Approach

The easiest algorithm for ray tracing can be split into two calcula-
tions per pixel: Step one is to find the closest surface, step two cal-
culates the color of the hit point. Finding the closest surface is also
rather simple, since every object in the scene can be intersection
tested against the current ray [JC07, p.14, 2.2]. There exist many
calculation methods for intersecting rays with primitives, they will
however not be discussed. To extend the capabilities, shadow rays
can be used to calculate light contribution and, as the name im-
plies, shadows. This is done by tracing rays from each hit point to
each light source in the scene or parallel rays for direction lights.
If a ray does not hit an opaque object on the way to a light source,
that light contributes to the final color, otherwise the hit point is in
shadow [JC07, p.24, 2.5]. This results in more realistic lighting and
shadows compared to rasterization. It is further possible to render
realistic reflections and refractions, which are important for specu-
lar and transparent materials. Reflection is the concept of specular
materials like metals reflecting rays in the mirror direction. Refrac-
tion is important for transparent materials such as glass and water.
It deflects a ray, giving it a slightly altered direction through the ma-
terial. Those new rays influence the color of the original hit point
and may lead to more reflection or refraction rays [JC07, p. 25-28,
2.6].

4.2. Recursive Ray Tracing and Path Tracing

Those effects can be computed using recursive ray tracing or path
tracing. The recursive model is capable of specular reflections,
refractions and shadows. Diffuse reflections and indirect illumina-
tion is not considered. For each hit point, a reflection and/or re-
fraction ray is spawned and the illumination contribution of each
light source is calculated using shadow rays. This continues until
a diffuse and opaque material, or no material is hit. In the path
tracing model, every ray can cause either a reflection or a refrac-
tion ray. The reflection here can be either diffuse or specular. This
enables indirect and global illumination. The direction for diffuse
reflections, as well as which type of ray is spawned is stochastically
chosen. The recursion continues until random termination (also re-
ferred to as "Russian Roulette"), when reaching a given recursion
depth or if the ray does not hit a surface [CJ16, p. 111, 3.2.]. The
recursive concept is illustrated in figure 4, showing a ray scattering
into several reflection and refraction rays. Figure 5 is using the path
tracing model.

Figure 4: Recursive ray tracing example [adapted, [JC07, p. 25]]



4

4.2.1. Cornell Box Example

To illustrate the various techniques, figure 5 shows how two rays
are path traced from a camera through the image plane - or screen
- into a scene. The first ray is reflected by the chrome teapot and
walls before hitting a light source. The second one is reflected by a
wall, refracted by the glass teapot and then reflected again. Each hit
point is tested for illumination using shadow rays towards random
points in the light sources. Since the used method is path tracing,
the diffuse reflection direction as well as the choice of refraction
over reflection on the glass teapot is stochastically determined.

Figure 5: Several optical effects (reflections, refractions and shad-
ows) in a cornell box using path tracing [CJ16, p. 111, 3.2]

4.3. Monte Carlo

Monte Carlo simulations are in general used to solve a problem that
is analytically difficult or impossible to solve. This is done by re-
peating the same experiment with random variables. The concept is
used in ray tracing primarily to render images with less noise. This
is because even shooting many rays per pixel cannot guarantee a
noise-free image if there are transparent or reflective materials in
the scene. In Monte Carlo ray tracing, ray origins and directions,
sampling patterns and more are stochastically determined. This is
why Monte Carlo is also called stochastic ray tracing. There are two
main categories: path tracing as explained in 4.2 and distribution
ray tracing [JC07, p. 28, 2.7]. The difference to path tracing is that
instead of one ray being traced all the way to a light source, mul-
tiple rays are traced at once. This leads to a lot of additional rays
after just a few reflections. However, a good distribution of ray di-
rections is also ensured [JC07, p.29, 2.7.1]. The advantages of path
tracing outweigh the worse distribution and noise in comparison
to distribution ray tracing, which is why most modern rendering
softwares use path tracing. It is also rather trivial to simulate cam-
era effects such as motion blur and depth of field, both of which
is important for movie production. Motion blur can be added by
shooting rays at different times within a frame. Depth of field can
be added by slightly varying ray origins and directions for each
pixel [JC07, p.32-33, 2.7.7/8].

4.3.1. Sampling Patterns

For ray tracing it is beneficial to use sampling patterns instead of
random sample points for each pixel, because it can improve con-
vergence and reduce noise. If the number of samples per pixel is

known in advance, a sample set can be used. This set contains the
randomized sample points. Sample sets are however not used in
modern renderers, since it is important that the partially computed
image already has low noise. Therefore, ordered sets - so called
sample sequences - are used instead [CJ16, p. 130, 5.1.2]. Figure
6 shows different sample patterns, the left most being uniform ran-
dom samples while the rest are quasi-random samples.

Figure 6: Various pixel sample patterns [CJ16, p. 130]

To illustrate the advantage that a sample sequence has over a
sample set, figure 7 shows the shadow of a teapot rendered with the
same amount of samples per pixel. The image on the left used a
sample set, the image on the right a sample sequence.

Figure 7: Results of ray tracing a penumbra region with a sam-
ple set (left) and a sample sequence (right) (100 samples per pixel
each) [CFS∗18, p. 9]

4.4. Improvements and Speed-Ups

Ray tracing, while unparalleled at rendering high quality images,
is inherently slower than traditional rasterization. The amount of
computations required for each frame is one big problem, incoher-
ent and unpredictable data access the other one. Back when the
first renderers where implemented, it seemed impossible to use ray
tracing efficiently. With improvements in computational power as
well as algorithmic advances however, it is now the state of the art.
Therefore a few of those improvements will now be highlighted.

4.4.1. SIMD and Multi-Core Processors

The first major improvement is using single instruction, multiple
data (SIMD) instructions and multi-core processors. Most SIMD
processors allow for at least four operations in parallel. Therefore it
is, for example, possible to either test four rays against one triangle,
or one ray against four triangles at the same time. For coherent rays,
speed-ups of 350% are possible [JC07, p. 44, 3.4.1]. While it seems
like ray tracing is easy to implement in parallel, this only holds true
if the entire scene fits into memory. Using threads, a 120-150%
speed-up is achievable, given that the software has been optimized
for parallel execution [CFS∗18, p. 8, 5.4].



5

4.4.2. Path Differentials

Another improvement consists of using path differentials. Here a
ray also has the information about how a ray with a slightly differ-
ent origin or direction would have traveled. This prevents incoher-
ent rays, like reflection rays from curved or diffuse surfaces, from
trashing geometry and texture caches. Using the "radius" of the ray
at impact, it is possible to choose the best tessellation level and tex-
ture filter size [CJ16, p. 134, 5.1.3]. A selection of coherent and
incoherent rays with ray differentials is shown in figure 8.

Figure 8: Specular reflections on smooth / curved surfaces and a
diffuse reflection using path differentials [CJ16, p. 134, 5.1.3]

4.4.3. Denoising

Reducing noise with more samples alone has diminishing returns,
therefore denoising filters are necessary. While simple Gaussian
blurring can improve image quality, it also blurs edges. Renderman
for example therefore uses an advanced filter, it adjusts weights
based on color similarities and also considers the following and pre-
vious frames for optimal noise removal. Since most noise originates
from direct and indirect illumination, the filter can remove textures
to reduce noise more accurately. It is also possible to split illumi-
nation into finer subdivisions. Experiments with machine learning
have already been done as well, denoising filters are however still
an area of ongoing research. To illustrate the impact that denoising
can have, figure 9 shows close-ups of a frame from Finding Dori.
The image on the bottom is almost noise free, while preserving all
the edges and features of the original image.

Figure 9: A frame from Finding Dori before and after denoising,
as well as close-ups [CFS∗18, p. 18, 13]

4.4.4. Ray reordering

To achieve coherent memory access, it is also possible to reorder
rays and ray hits. This can for example be done by collecting rays
in bins based on the cardinal directions. The rays can then be sorted
further based on the ray origins and directions. This guarantees co-
herent geometry access. Ray hits can be sorted by which texture
they need to access as well. This reduces the amount of times a
texture file has to be transferred into memory. Disney’s Hyperion
renderer for example uses this version of ray reordering [CJ16, p.
136, 5.1.5].

4.5. Bidirectional Path Tracing

To conclude ray tracing, bidirectional path tracing is presented as
an outlook on areas of future research. As the name implies, paths
are here traced from both the camera and light sources at the same
time and then connected. Bidirectional path tracing is especially
advantageous in scenes that are dominated by indirect light, be-
cause unidirectional path tracers can have a difficult time finding
the light source [CJ16, p. 154, 8.1]. While this type of path tracing
has its advantages, there are also problems that are not yet solved.
Incoherent paths of light sources can cause texture trashing and
path differentials are not as useful for bidirectional path tracing as
for unidirectional path tracing. Optimal texture filter sizes for light
paths can currently only be determined after the path has been fully
traced, which does not solve the problem of not knowing the op-
timal size during the tracing process [CFS∗18, p. 16, 12.1]. The
advantages are however worth exploring the problem further in the
upcoming years, as figure 10 shows.

Figure 10: Unidirectional and bidirectional path tracing results
after the same amount of render time [CFS∗18, p. 16, 12.1]

5. Hybrid Rendering Techniques

In the years between fully path traced movies and rasterization-
based rendering, several hybrid rendering methods were developed.
Those hybrids enabled certain elements or effects in the scene to be
rendered with ray tracing instead of rasterization. This section will
focus on developments of Pixar’s Renderman. One of the first uses
of ray tracing was to render reflections and refractions of a glass
bottle in the movie A Bugs Life (1998), as seen in figure 11. After-
wards, ray tracing gained traction as a means to calculate ambient
occlusion, first in the movie The Incredibles (2004). Even though



6

Figure 11: Examples of ray tracing in combination with REYES
rasterization used in the movies A Bugs Life and Cars [CJ16, p.
118, 4.3], [CFLB06, p. 5, 9]

ambient occlusion requires a lot of rays to be traced, it would have
been far more time consuming to evaluate the shaders at ray hit
points for e.g. reflections [CJ16, p. 118, 4.3]. The first use of ray
tracing for more complex tasks was in the movie Cars (2006). Here,
REYES was used to render everything directly visible to the cam-
era. The shading points were then able to initiate ray tracing for re-
flections, ambient occlusion and shadows [CFLB06, p. 5, 7]. While
most of the scenes used one level of reflection with a maximum
ray distance of 12 meters, there were some shots that needed two
levels of reflection [CFLB06, p. 5, 9]. An example of a close up of
reflective chrome car parts can be seen in figure 11. Those hybrid
use cases were later replaced by pure path tracing. The latest Pixar
movies, such as Coco (2017), are fully path traced.

6. Performance

Rendering nowadays takes a lot of time, memory and processing
power. To illustrate the resources necessary to render even just a
single frame, examples from Cars (2006) and Coco (2017) are go-
ing to be presented. This will show that even though the visual and
geometric complexity has grown, the render time remains very long
and challenging.

Figure 12: Several scenes from Cars (left) and Coco (right) that are
heavy on rendering performance [CFLB06, p. 5, 8], [CFS∗18, p.
7, 5.1, 5.3]

6.1. Cars

The scene in figure 12 shows a partially ray traced test scene with
15 non-instanced cars. The shadows, reflections and ambient oc-
clusion are ray traced, everything else is rendered using REYES.
This scene was rendered on a 2GHz PowerPC with 2 GB of mem-
ory. At full tessellation, the scene features 383 million vertices and
678 million triangles. The required storage for the fully tessellated

scene would be 4.6 GB. The total amount of rays needed to render
this scene was 174 million, causing 1.2 billion intersection tests.
The render time for this single frame was 106 minutes. The render-
ing occurred with several improvements in place, without those it
would have taken almost 9 times as long [CFLB06, p. 5, 8].

6.2. Coco

In one of Pixar’s latest movies, Coco, the average scene consumed
35 GB of memory each frame, with a few requiring up to 120 GB,
with several hundred million ray hits per frame [CFS∗18, p. 6, 5].
The upper image in figure 12 shows a scene with 20 million ob-
jects, some of which are instanced. The average complexity of a
scene was in the range of 10-100 million objects. Objects are how-
ever tessellated on demand [CFS∗18, p. 6, 5.1]. The lower image
in figure 12 illustrates the amount of lights that were used in some
frames. In this scene, 8 million unique lights had to be considered
for shading. For efficient illumination, only a subset of lights were
path traced for each hit point. With several improvements the av-
erage render time for one frame was cut down from 1000 to just
50 hours [Sey]. The render time is only that long if a single core
is used. Most modern movie productions however use so called
render-farms, big clusters of many computers, to render faster.

7. Conclusion

In conclusion, rendering remains to be an interesting problem that
is far from solved. Even though rasterization such as the REYES
algorithm is not commonly used in movies anymore, ray tracing
and its challenges remain to be a difficult problem. While improve-
ments such as denoising and bidirectional path tracing have been
made, there is still a lot of room for future research. The visual
fidelity that can be achieved with modern path tracing may be as-
tonishing, but the complexity and diversity of upcoming films is not
going to stop increasing, as has been proven time and time again.

References
[AMHH08] AKENINE-MÖLLER T., HAINES E., HOFFMAN N.: Real-

Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.
1, 2

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The reyes image
rendering architecture. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987),
95–102. 2, 3

[CFLB06] CHRISTENSEN P., FONG J., LAUR D. M., BATALI D.: Ray
tracing for the movie ‘cars’. 2006 IEEE Symposium on Interactive Ray
Tracing (2006), 1–6. 3, 6

[CFS∗18] CHRISTENSEN P., FONG J., SHADE J., WOOTEN W., SCHU-
BERT B., KENSLER A., FRIEDMAN S., KILPATRICK C., RAMSHAW
C., BANNISTER M., RAYNER B., BROUILLAT J., LIANI M.: Render-
man: An advanced path-tracing architecture for movie rendering. ACM
Trans. Graph. 37, 3 (Aug. 2018), 30:1–30:21. 1, 3, 4, 5, 6

[CJ16] CHRISTENSEN P. H., JAROSZ W.: The path to path-traced
movies. Found. Trends. Comput. Graph. Vis. 10, 2 (Oct. 2016), 103–
175. 1, 3, 4, 5, 6

[JC07] JENSEN H. W., CHRISTENSEN P.: High quality rendering using
ray tracing and photon mapping. 3, 4

[scr] SCRATCHAPIXEL.COM: Rasterization: a practical implementation.
Accessed: 2018-11-10. 2

[Sey] SEYMOUR M.: Renderman’s visuals for coco. Accessed: 2018-12-
09. 6


